
Using low-discrepancy sequences and the Crofton formula

to compute surface areas of geometric models

Xueqing Lia, Wenping Wangb,*, Ralph R. Martinc, Adrian Bowyerd

aDepartment of Computer Science, Shandong University, China
bDepartment of Computer Science and Information Systems, University of Hong Kong, Hong Kong, China

cDepartment of Computer Science, Cardiff University, UK
dDepartment of Mechanical Engineering, University of Bath, UK

Received 30 October 2001; received in revised form 29 April 2002; accepted 30 April 2002

Abstract

The surface area of a geometric model, like its volume, is an important integral property that needs to be evaluated frequently and

accurately in practice. In this paper, we present a new quasi-Monte Carlo method using low-discrepancy sequences for computing the surface

area of a 3D object. We show that the new method is more efficient than a Monte Carlo method using pseudo-random numbers. This method

is based on the Cauchy–Crofton formula from integral geometry, and it computes the surface area of a 3D body B by counting the number of

intersection points between the boundary surface of B and a set of straight lines in E 3. Low discrepancy sequences are used to generate the set

of lines in E 3 to reduce the estimation errors that would be caused by using statistically uniformly distributed lines. We study and compare

two different methods for generating 3D random lines, and demonstrate their validity theoretically and experimentally. Experiments suggest

that the new quasi-Monte Carlo method is also more efficient than the conventional approach based on surface tessellation. q 2002 Elsevier

Science Ltd. All rights reserved.

Keywords: Surface areas; Stochastic methods; Low-discrepancy sequences

1. Introduction

Length, area, volume, and moments are important

integral properties of geometric objects that need to be

computed frequently in solid modeling applications. There

are various methods in the literature for computing the area,

volume, and other measures, of geometric objects in

different representations [3,4,7–10,17,19]. One approach

to computing volume properties reduces them to compu-

tation of appropriate surface integrals by means of the

divergence theorem [19]. Thus, computing integrals over

the surface of the object is both important in its own right,

and as a means of computing other mass properties of

interest. We consider here the particular problem of

computing the surface area of an object in CSG

representation.

There are various approaches currently in use for

performing this computation. A direct approach, used in

GMSolid, is described by Sarraga [17]. The surface of each

primitive is divided into small elements, whose sizes are

chosen to meet a user-defined density. These elements are

topologically rectangular and are bounded by parameter

lines u ¼ u1; u ¼ u2 and v ¼ v1; v ¼ v2 (except e.g. at the

poles of a sphere). Each element is then classified as lying

inside, outside or on the model by means of point-

membership classification, using a random test point

belonging to the element. (A randomly chosen point is

used to avoid aliasing effects.) The area of each element

classified as on the surface of the solid is computed

analytically using the usual formula from differential

geometry:

A ¼
ðv2

v1

ðu2

u1

ffi
ðru·ruÞðrv·rvÞ2 ðru·rvÞ

2

q
du dv:

These areas are then summed to give an estimate for the

surface area of the whole object.

Another class of approaches is based on ray casting [11].

The area of a face can be approximated as the sum of the

areas of rectangular strips that approximately cover the face.

0010-4485/03/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 01 0 -4 48 5 (0 2) 00 1 00 -8

Computer-Aided Design 35 (2003) 771–782

www.elsevier.com/locate/cad

* Corresponding author. Tel.: þ852-2859-7074; fax: þ852-2559-8447.

E-mail addresses: wenping@csis.hku.hk (W. Wang), liyou@jn-public.

sd.cninfo.net (X. Li), ralph@cs.cf.ac.uk (R.R. Martin), a.bowyer@bath.ac.

uk (A. Bowyer).

http://www.elsevier.com/locate/cad

Each face is covered by a bounding rectangle, which is

divided into strips; a face is assumed to be planar here for

simplicity of description, but the algorithm can be

generalized. Within each strip, a ray is fired across the

rectangle, recording where the ray enters and leaves the

face. Summing the lengths of the segments inside the face

multiplied by the widths of each strip gives an approxi-

mation for the area of the face. A second approach also

based on ray casting is to fire a regular grid of rays through

the object, recording entry and exit points. Adjacent

piercing points are connected to form triangles, and the

sum of the areas of these triangles approximates the surface

area of the object [14]. Clearly, this is not accurate where the

rays are almost tangential to the object.

A third type of approach converts the CSG representation

to a boundary representation. From this it is possible to

produce a polygonal tessellation of the surface of the model,

for example, using the marching cubes algorithm [12]. An

approximation of the surface area can then be computed by

summing the areas of all polygons in the tessellation. More

sophisticated variants of this approach have also been

described [20,22]; sampling rays are cast to accurately

locate geometric intersections on the tessellated surface

which is computed adaptively. Alternatively, the area can be

computed directly from the boundary representation model

using exact integral methods [9,10] or numerical quad-

rature; it is also possible to convert surface integrals into

line integrals using Green’s theorem [19] as an alternative

means of evaluation.

We present a new approach to computing the surface area

of a CSG solid. Like the second class of previous

approaches, our method is based on ray casting, but it

uses an entirely different principle for computing the area,

and uses random rays. Furthermore, to obtain better

performance than a naive application of the method, we

use low-discrepancy sequences to obtain good statistical

properties.

The method we present is most suited for use with CSG

models, as it is based on ray casting and ray classification.

However, the ideas have more general applicability, and the

method could also be applied to boundary representation or

even surface models, too, if desired.

Our method is based on the Cauchy–Crofton formula

(also known as the Maurer–Cartan formula) from integral

geometry [16], which relates the surface area of a 3D body B

to the number of intersection points between the surface of

B and a set of random straight lines in E 3. There are three

main ideas that are used in this paper: (1) the Cauchy–

Crofton formula; (2) two 4D space models which para-

meterize uniformly distributed lines in E 3; and (3) low

discrepancy sequences that produce a set of more evenly

distributed lines than pseudo-random number generators do,

thus improving the efficiency (or accuracy, for the same

amount of time) of area computation.

Generating random lines in 3D space is far more tricky

than generating random points in Euclidean space. In this

paper, we study in detail two models for generating 3D lines

that have appeared in the literature. We demonstrate the

theoretical validity of both models by verifying that the

measure of the 3D line distribution in each case satisfies an

established criterion in integral geometry, i.e. invariance

under Euclidean transformations. We also present the

effective application of both models in the quasi-Monte

Carlo method through experiments, and demonstrate the

superiority of the quasi-Monte Carlo method to a tessellation-

based method.

The remainder of this paper is organized as follows. In

Section 2, we introduce the Cauchy–Crofton formula from

integral geometry and derive from it the formula for surface

area computation. In Section 3, we discuss two models for

uniformly distributed lines in E 3. In Section 4, we review

the properties of low discrepancy sequences, and explain

how to use them to generate lines in 3D space with good

statistical properties. In Section 5, we consider the problem

of determining the number of intersections between a line

and the boundary surface of a CSG solid. In Section 6,

experimental results and comparisons with two methods for

computing surface area based on surface tessellation are

presented, and we give conclusions in Section 7.

2. Formula for surface area computation

Studying the measure of a set of geometric figures is the

central topic in integral geometry, a branch of geometry that

is closely related to combinatorial geometry, convex

geometry, and geometric probability. The result from

integral geometry that is of interest to us here is the

measure, or density, of a set of lines in E 3. The reader may

see Refs. [15,16] for more detailed derivation of the

following results.

Consider a surface element S in E 3. Let n be the unit

normal vector of S. For a line L intersecting S, let ðx; yÞ be

the intersection point of L and S, and let c be the angle that L

forms with the normal vector n. It can be shown [15] that the

density of all lines intersecting S is given by

dL ¼ cos clds ^ dsl; ð1Þ

where the exterior product ds ¼ dx ^ dy is the area element

of S, and ds is the area element on the unit sphere S 2, which

is the domain of the unit vector n. Here ^ stands for the

exterior product of two differential forms. This density

function is invariant under Euclidean transformations as are,

for example, area and volume in Euclidean space.

Let S be a piecewise smooth surface (i.e. a collection of

regular surface patches with G 0 continuity) of area s.

Integrating the right-hand side of Eq. (1) over S and over

directions of all the lines intersecting S at a point yields

ð
lcos clds ^ ds ¼ 2ps; ð2Þ

because the integration of lcos clds over all directions gives

X. Li et al. / Computer-Aided Design 35 (2003) 771–782772

2p, which is the area of the projection of S 2 onto a planar

section of S 2 through its center. On the other hand, the

integration on the left-hand side of Eq. (2) runs over all the

lines. Since each line is counted twice at each of its

intersection points with the surface S (due to the two

hemispheres on the two sides of the surface), overall the line

is counted 2m times, where m is the total number of

intersection points of the line with S. Hence,

ð
m dL ¼ ps: ð3Þ

This is the Cauchy–Crofton formula that relates the area of

a surface to the number of intersections that the surface has

with all lines in E 3.

Next we show how to use the above formula to compute

the surface area of a given 3D body. Suppose that S is the

boundary surface of a body B whose area s needs to be

computed. Suppose further that S1 is the bounding surface

of a reference object B1 which contains B. See Fig. 1. We

assume that the area s1 of B1 is known. Consider a set L of

N lines that are randomly sampled from the set of lines that

intersect B1. Let n be the total number of intersection points

of S with the lines in L. Let n1 be the total number of

intersection points of S1 with the lines in L. According to

Eq. (3), by integration approximation, we get

n

N
< cps and

n1

N
< cps1;

where c is a constant of proportionality. It follows that

s <
n

n1

s1: ð4Þ

To summarize, the surface area s of S can be computed by

formula (4) with the following algorithm.

1. Generate a set L of N random lines that sample the set �L
of all lines intersecting the reference object B1.

2. Compute the number of intersections of the lines in L
with the reference surface S1 and the number of

intersections of the lines in L with the surface S. Let

n1 and n denote these two numbers of intersections,

respectively.

3. Approximate the area s of S by ~s ¼ ðn=n1Þs1; i.e. Eq. (4).

In order for formula (4) to be valid, it is essential to

assume that the N lines of L form a well chosen sample of

(for example, are uniformly distributed in) the set �L of all

the lines that intersect the reference object B1. The

approximation error of ~s to the exact area s of S can be

attributed to the discrete sampling of the set �L by L, and

this error is also dependent on the evenness of the

distribution of the lines of L.

3. Generating uniformly distributed lines

In this section, we consider how to generate a set of

uniformly distributed lines in E 3. The set of lines in E 3

forms a 4D space and there are several different represen-

tations or models for this space. The best known

representation for a line in E 3 probably comprises the

Plücker coordinates [6], which are homogeneous coordin-

ates (L1, L2, L3, L4, L5, L6) satisfying L1L4 þ L2L5 þ L3L6 ¼

0: However, this representation does not provide a density

measure that allows a simple way to generate uniformly

distributed random lines.

An alternative might be to consider the density function

dL ¼ cos clds ^ dsl;

discussed in Section 3.2. Since this density function is

defined locally relative to a fixed planar surface element, it

is natural to apply this density function over a finite planar

patch, called a base; i.e. choose a point of the planar patch as

a point through which the line passes, and then determine

the direction of the line according to the density function.

However, this method cannot generate a set of lines

covering a 3D region like a sphere or a cube, since some

of the lines required do not intersect the base, as illustrated

in Fig. 2.

In the rest of this section we will study the application of

two models for generating lines in 3D that are reported in

Ref. [18] and Ref. [2], called the chord model and tangent

model, respectively. The global nature of these models

makes them particularly suitable for generating 3D

uniformly distributed random lines. However, these models

were originally proposed using intuitive arguments [2,18].

Thus, we first demonstrate that these models can be

Fig. 1. Body B is contained within the reference body B1.
Fig. 2. The dashed lines miss the base.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782 773

rigorously established by showing that the distribution of

the lines generated by each of the two models has a density

that is invariant under Euclidean transformations, as

required in integral geometry for the correct application of

formula (4). Then procedures are presented for sampling the

spaces of these models using uniform random variables in

the interval [0,1].

3.1. The chord model

The chord model can be described as follows. A random

line is defined to be a line passing through two independent

uniformly distributed points on a sphere SR of radius R in

E 3. All such lines are all the lines in E 3 that intersect the

sphere SR. Since only uniformly distributed lines are

acceptable in the application of formula (4), we need to

ensure the property that the random lines produced by the

chord model have a uniform distribution. This property was

derived in Ref. [18] by linking the chord model to another

intuitive model using chord length distribution. In the

following, we provide a direct proof of this property by

showing that random lines produced by the chord model

have the density defined by Eq. (2).

Consider the sphere SR of radius R centered at the origin

O. Let L be a line determined by two random points P0 and

P1 on SR. Since P0 can be any point on SR with equal

probability, we define our coordinate system for this

calculation so that P0 ¼ ð0; 0;2RÞ: Let S denote a surface

element of sphere SR at the point P0, i.e. S is tangential to SR.

Let ds denote the area element of S. Let �S2 denote the unit

sphere centered at P0. Let SR be parameterized by

Q1ðb;aÞ ¼ ðR sin b cos a;R sin b sin a;R cos bÞ; ð5Þ

and let �S2 be parameterized by

Q2ðf;aÞ ¼ ðsin f cos a; sin f sin a; cos f2 RÞ:

These two parameterizations are illustrated in Fig. 3.

The area element at Q2ðf;aÞ on �S2; which is

sin f df da, is projected under the projection centered at

P0 to the surface area element of area

R2 sinðbÞdb da ¼ 2R2 sinð2fÞdf da;

at Q1ð2f;aÞ on SR, since Q2ðf;aÞ is mapped to Q1ð2f;aÞ;

df to db ¼ 2 df; and da to da: See Fig. 4. Clearly, the unit

direction vector of the line L, which is ðP1 2 P0Þ=lP1 2 P0l
and has one end attached at P0, falls in a surface element of

area sin f df da at Q2ðf;aÞ on �S2 if and only if point P1

falls in a surface element of area 2R2 sinð2fÞdb da at

Q1ð2f;aÞ on SR. Hence, since P1 is uniformly distributed on

SR, the density of the line that passes through P0 and has

direction vector Q2ðf;aÞ2 P0 is

2R2 sinð2fÞdf da ¼ 4R2 cos f sin f df da ¼ 4R2 cos f ds;

where ds ¼ sin f df da is the area element on �S2 for the

direction of L. Dropping the proportionality constant 4R 2,

we obtain that the density of random lines produced by the

chord model which intersect the planar surface element S at

P0 is cos f ds ^ ds, where ds is the differential area of the

element S. Since this density function is identical to Eq. (2),

the random lines produced by the chord model have a

uniform distribution.

3.2. The tangent model

Beckers and Smeulder [2] derive a 4D model for lines in

E 3 and the associated density of lines via intuitive

invariance principles; we call this model the tangent model.

Let Sr denote a sphere of radius r centered at the origin. A

point x on the sphere Sr is defined by three parameters r, u,

f, where u and f are, respectively, the latitude and

longitude of point x in the spherical coordinate system.

Now consider the pencil of lines on the tangent plane of Sr at

x with the center of the pencil at x. Let c be the angle for

specifying a line L in this pencil with respect to a reference

direction aligned with the appropriate great circle as shown

in Fig. 5. The domains of the parameters are r [[0,1),

Fig. 3. The parameterizations for the two spheres.

Fig. 4. The 2D sectional illustration of the two spheres.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782774

u [[0,p], f [[0,2p), and c [[0,p). It is clear that a line

in 3D is uniquely determined by the four parameters r, u, f,

and c. As a matter of fact, there is a one-to-one

correspondence between a line in 3D space and a parameter

point in the 4D space of ðr; u;f;cÞ unless u ¼ 0 or p. Thus

ðr; u;f;cÞ can be regarded as a representation of lines in 3D

space. We refer to this model as the tangent model because a

line is represented as a tangent to some sphere of radius r in

this model.

It is shown in Ref. [2] that uniformly distributed lines

which are defined in terms of some intuitive invariance

principles in E 3 have density cr sin u in the tangent model,

where c is a normalization constant. In the following, we

validate the tangent model by showing that, with the density

function cr sin u, it produces random lines with the same

distribution as that of the random lines produced by the

chord model.

For the sake of simplicity, and without loss of generality,

we assume SR to be the unit sphere S 2 centered at the origin

when discussing intersections of the tangent lines of Sr with

SR; thus 0 # r # 1. The parameter domain of ðr; u;f;cÞ is

[0,1] £ [0,p] £ [0,2p) £ [0,p) for generating all the lines

intersecting S 2. Clearly, the length ‘ of the chord that is on a

tangent to Sr (a sphere of radius r centered at the origin) and

intersected within S 2 satisfies r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ð‘=2Þ2

p
, where

0 # r # 1. Let gð‘Þ be the density of ‘, and f(r) the density

of r. Then

gð‘Þ ¼ f ðrÞ
dr

d‘

����
����;

by a change of random variable. On the other hand,

f ðrÞldrl ¼
ð

cr sin uldu df dclldrl ¼ 4cp2rldrl;

with the integration running over the domains of u, f, and c.

Since

dr

d‘

����
���� ¼ ‘

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ð‘=2Þ2

p ¼
‘

2r
;

we get

gð‘Þ ¼ f ðrÞ
dr

d‘

����
���� ¼ 4cp2r·

‘

2r
¼ 2cp2

‘:

Since the length ‘ of a chord within a unit sphere satisfies

0 # ‘ # 2, we have
Ð2

0 gð‘Þ ¼ 1: It follows that c ¼

1=ð4p2Þ; i.e. gð‘Þ ¼ ‘=2:

On the other hand, it is shown in Ref. [18] that the chord

length of random lines produced by the chord model also

has the density distribution hð‘Þ ¼ ‘=2: Because of the

directional homogeneity of the two models, we conclude

that the tangent model, like the chord model, generates

uniformly distributed lines in 3D space.

The above 4D space of ðr; u;f;cÞ serves as the starting

point of our method for generating uniformly distributed

lines in 3D space intersecting a sphere SR of radius R. Since

the density of lines in E 3 is proportional to cr sin u, if we

can generate a random point in the 4D parameter space

ðr; u;f;cÞ with probability density cr sin u, then this

random point will give a uniformly distributed random

line in E 3. Hence we just need to generate a random point in

ðr; u;f;cÞ with density proportional to cr sin u.

First, we may easily generate f [½0; 2pÞ and c [½0;p�

with uniform distribution. Next, we need to generate r [
½0;R� with density k0r and u [½0;p� with density k1 sin u

for some constants k0 and k1; to make k0r and

k1 sinu legitimate probability density functions, we must

set k0 ¼ 2=R2 and k1 ¼ 1=2: Then it is easy to see that the

cumulative probability distribution functions for r and u are

GðrÞ ¼ r2=R2 and HðuÞ ¼ ð1=2Þð1 2 cos uÞ; respectively.

Now we consider generating a random variable with a

prespecified cumulative distribution F(y). Suppose that b is

a random variable with distribution function F(y), which is

assumed to be a continuous and non-decreasing function.

Define F21ðyÞ ¼ inf{xlFðxÞ ¼ y}: Let a be a uniformly

distributed random variable in [0,1]. Then we claim that

b ¼ F21ðaÞ is a random variable with distribution F(y), for

Pðb # yÞ ¼ PðF21ðaÞ # yÞ ¼ Pða # FðyÞÞ ¼ FðyÞ; where

P() stands for the probability of an event. Hence, the

desired random variable b with distribution F(y) can be

generated by function b ¼ F21ðaÞ of a uniform random

variable a in [0,1]. By a straightforward application of this

argument, r and u can be generated by r ¼ R
ffiffi
a

p
and u ¼

arccosð1 2 2aÞ; respectively, where a is a uniform random

variable in [0,1].

The above provides us with the means to generate a set of

uniformly distributed lines that samples all the lines

intersecting a sphere centered at the origin and of radius

R. Hence, the reference body B1 defined in Section 2 should

be set to a sphere of radius R centered at the origin. To recap,

there are two main steps: (1) generate the four random

parameter values ðr; u;f;cÞ with their respective densities

as given above; and (2) construct the unique line from the

values of these four parameters. The detailed procedure for

computing a parametric equation of the line is then

straightforward.

Fig. 5. The four parameters ðr; u;f;cÞ for a line in the tangent model.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782 775

4. Low discrepancy sequences

The approach to computing the surface area based on

formula (4), as we have pursued so far, is essentially a

Monte Carlo method for numerical integration, with the

domain of integration being the 4D parameter space

ðr; u;f;cÞ of 3D lines in the case of the tangent model. It

is known [13] that uniformly distributed random points are

not distributed as evenly as so-called low discrepancy

sequences of points for the purpose of accurate numerical

integration. Hence, we will use low-discrepancy sequences,

instead of pseudo-random number generators, for generat-

ing the set L of evenly distributed lines. For this reason our

method is called a quasi-Monte Carlo method. Such

methods have already been used for volume computations

in CSG modeling [3].

Below we briefly introduce the concept of low

discrepancy sequences, following Ref. [13]. Given a set of

numbers xi, i ¼ 1; 2;…;N; and a set E contained in an

interval I, define

AðE;NÞ ¼
X

fEðxiÞ;

where fE(x) is the characteristic function of the set E, i.e.

fEðxÞ ¼ 1 if x [E and fEðxÞ ¼ 0 otherwise. The discrepancy

of the sequence xi over the interval I is defined to be

DN ¼ sup
J

AðJ;NÞ

N
2 lJl

����
����;

where J runs through all subintervals of I and lJl is the

length of J. Together with the regularity of the integrand, the

discrepancy of a sequence of points provides an error bound

for numerical integration using the sequence. For a function

f(x) with bounded variation V(f) over I ¼ ½0; 1�; it can be

shown [13] that

1

N

X
i¼1

f ðxiÞ2
ð1

0
f ðxÞdx

�����
����� # Vð f ÞDp

N ;

where Dp
N has the same definition as DN but with the

subinterval J having the form [0,t], t # 1. Clearly, Dp
N #

DN : Hence, the lower the discrepancy, the better is the

distribution of the sequence, and the more accurate is the

numerical integration.

Discrepancy can also be defined for a box [0,1]s in a s-

dimensional space. It is known that the expected value of the

discrepancy of a statistically uniformly distributed random

variable is O(N 21/2). In contrast, the discrepancy of

Niederreiter’s sequence of points in the box [0,1]s is

O(N 21 logs N). This means low discrepancy sequences,

such as Niederreiter’s, yield asymptotically smaller error

bounds for numerical integration in our present setting.

In our quasi-Monte Carlo method we use Niederreiter’s

4D low discrepancy sequences of points in either the chord

model or the tangent model. This is done in the 4D space

ðb;a;b0;a0Þ for the chord model, where ðb;aÞ and ðb0;a0Þ

are two independent pairs of parameters for generating two

independent points on the sphere SR through Q1ðb;aÞ as

defined in Section 3.1, and in the ðr; u;f;cÞ space for the

tangent model as defined in Section 3.2.

Figs. 6 and 7 illustrate the difference in distribution

evenness of two sets of 1000 points on a sphere; the points in

Fig. 6 are generated using a pseudo-random number

generator and the points in Fig. 7 are generated using

Niederreiter’s 2D low discrepancy sequence, through the

parameterization of a sphere given by Eq. (5). The sampling

of the surface is clearly more even in the latter case. Note

that we do not want a perfectly even spacing when

performing numerical integration, since that can lead to

unwanted aliasing artifacts.

5. Intersecting a line with a CSG solid

Let S be the boundary surface of a CSG body B

consisting of a number of primitive surfaces. Suppose that a

set of uniformly distributed lines, denoted by L, has been

generated. The next step of our method for computing the

surface area of S is to determine the number of intersection

points between each of the lines in L and the surface S.

This can be done by computing the intersection points of a

Fig. 6. Pseudo-random points. Fig. 7. Niederreiter’s low discrepancy sequence of points.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782776

line ‘ with all the primitive surfaces of B and then merging

the results according to the Boolean operations associated

with B to obtain the number of intersection points of the line

‘ with the boundary surface of B. As the result of this

merging step, intersection points not on the boundary

surface of B are removed and only those on the surface of B

are retained and counted. A detailed account of intersecting

a line with a CSG object, but for ray-tracing purposes, can

be found in Ref. [5].

Although only the number of intersections of the line

‘ with the body B matters eventually for computing the

surface area of B, it is still necessary to determine

the locations of the intersection points of ‘ with all the

primitive surfaces in order to classify these intersection

points with respect to the various surfaces. The intersection

of a primitive surface and a line ‘ can be computed

analytically if the primitive surface is an algebraic surface of

degree 4 or less. Numerical root finding methods must be

used if more general surfaces are used in the CSG definition.

Since CSG primitives encountered in CAD/CAM appli-

cations are mainly planes, natural quadrics, and tori or

cyclide surfaces, which are of degree 4 or less, our method is

applicable to these most common cases without resorting to

numerical solvers.

When one needs to compute the surface area of a part of

just a single algebraic surface f ðx; y; zÞ ¼ 0 (not necessarily

of low degree), the number of intersections (without their

corresponding locations) between a line and the part of the

surface can be determined efficiently using well known real

root isolation techniques, such as Sturm sequences, without

having to solve numerically for the roots of a possibly high

degree polynomial equation.

6. Implementation and experiments

In this section, we first give experimental results

demonstrating the convergence of the estimated surface

areas of some simple objects, i.e. a cube of side-length 20, a

sphere of radius 10, and a cylinder of radius 10 and height

20, followed by some examples involving more complicated

objects. These examples are computed using two different

methods: one is the standard Monte Carlo method using 3D

lines generated with pseudo-random numbers and the other

is the quasi-Monte Carlo method using Niederreiter’s low

discrepancy sequences. Further, we compare the efficiency

of the quasi-Monte Carlo method with a conventional

surface tessellation method based on the marching cubes

algorithm [12]. Finally, we compare our method with a

recursive tessellation method for surface area computation.

Pseudo-random numbers used in these tests were gener-

ated by the pseudo-random number generator provided by

the Visual Cþþ library. For generating Niederreiter’s

sequences of points in the 4D space of ðr; u;f;cÞ; we used a

Cþþ implementation adapted from the FORTRAN code

available from Ref. [1]. The test program was implemented

in Cþþ and ran on a PC using a Pentium II 233 MHz CPU.

For the simple objects (cube, sphere, and cylinder) used in

this section, the enclosing reference body B1 defined in

Section 2 was a sphere of radius R ¼ 18:849; except that an

enclosing sphere of radius 179.07 was used for the CSG

object in Fig. 12. These spheres were chosen to be slightly

larger than, and therefore contain, the tightest enclosing

spheres of the rectangular bounding boxes of given objects;

the bounding spheres of the simple objects have the same

radius ðR ¼ 18:849Þ because these objects happen to have

the same bounding boxes. Other types of bounding surfaces

(i.e. reference surfaces), such a rectangular box or a

cylinder, could also be used with the method; in general,

for better accuracy, one should use a bounding surface

which bounds a given object tightly and whose exact surface

area is easy to obtain. All errors measured and presented

below are relative errors.

Figs. 8–10 show the curves of relative approximation

errors generated by the standard Monte Carlo method using

pseudo-random numbers and the quasi-Monte Carlo method

using Niederreiter’s sequences for the cube, the sphere, and

the cylinder, respectively, using the tangent model for lines

(see Section 3.2). The comparisons in Figs. 8–10 suggest

that using the low discrepancy sequences leads to smaller

approximation errors than using pseudo-random numbers.

The reference lines marked with 2ð1=2Þ and 2ð2=3Þ in the

figures are the graphs of the functions n 21/2 and n 22/3,

respectively, for revealing the trend of the error curves; we

expect the standard Monte Carlo method to have error

O(n 21/2), where n is the number of lines used.

Fig. 11 shows the error curves generated by the standard

Monte Carlo method and by the quasi-Monte Carlo method,

respectively, for the CSG solid shown in Fig. 12. The error

curves in Fig. 11 also show that the error arising from using

low discrepancy sequences is in general smaller than the

error arising from using pseudo-random numbers.

The surface area of an object can also be computed

approximately by using the marching cubes method to

Fig. 8. Errors for the cube, with the tangent model.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782 777

generate a triangulation of the object’s surface and summing

the areas of the triangles in the triangulation. Fig. 13 shows

the error curves generated by the quasi-Monte Carlo method

and by the marching cubes method, respectively, for the

CSG object in Fig. 12, which will be referred to as

L ^ cylinder. We are careful to make comparable the

number of lines used in the quasi-Monte Carlo method and

the number of triangles generated by the marching cubes

method; thus, for varying k, the errors resulting from using

102k lines in the former are compared in Fig. 13 with the

errors resulting from using 103k cubes in the latter, which

generates O(102k) triangles on the surface of the L ^

cylinder. According to Fig. 13, the error given by the

marching cubes method, though decreasing more steadily, is

always larger than the error given by the quasi-Monte Carlo

method.

Figs. 14–17 show the error curves for the same set of

four objects, i.e. cube, sphere, cylinder, and L ^ cylinder,

using the quasi-Monte Carlo method with the chord model

for generating lines (see Section 3.1). These figures again

demonstrate that, with the chord model, the quasi-Monte

Carlo method using low discrepancy sequences produces

better results that the standard Monte Carlo method using

pseudo-random numbers.

Fig. 18 compares the errors for the object L ^ cylinder in

Fig. 12 given by the chord model and the tangent model,

respectively, used in the quasi-Monte Carlo method. The

radius of the reference sphere used was 179.07. We may see

that neither model appears to have a clear advantage over

the other in terms of accuracy; however, in our experience,

the chord model is easier to implement and has faster

running time than the tangent model.

Now we present two more examples of CSG objects of

greater complexity to show the efficiency of the quasi-

Monte Carlo method. The first example is the CSG

difference between a box of side-length 20 and a sphere

of radius 13, as shown in Fig. 19; we call this object

the ‘skeleton’. The second object is the ‘gate’ shown in

Fig. 20.

Figs. 21 and 22 show the curves of relative approxi-

mation errors generated by the Monte Carlo method using

pseudo-random numbers and the quasi-Monte Carlo method

Fig. 11. Errors for the object L ^ cylinder in Fig. 12, with the tangent

model.

Fig. 12. A CSG object: L ^ cylinder.Fig. 10. Errors for the cylinder, with the tangent model.

Fig. 9. Errors for the sphere, with the tangent model.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782778

using Niederreiter’s sequences for the ‘skeleton’ and the

‘gate’, respectively; the tangent model was used.

Figs. 23 and 24 show the same using the chord model.

Next, we compare our method with two other methods

that use surface tessellation to compute surface areas: the

marching cubes method and the adaptive subdivision

method. Table 1 lists the timings of computing the area of

the L ^ cylinder in Fig. 12 with three different methods: the

standard Monte Carlo method, the quasi-Monte Carlo

method, and the marching cubes method; 104 lines are

used in the first two methods, and 106 cubes used in the

marching cubes method.

Table 1 shows the superior timing efficiency of the quasi-

Monte Carlo method, and even that of the standard Monte

Carlo method, over the surface tessellation approach based

on the marching cubes method. As explained before, we use

106 cubes in the marching cubes algorithm in order that the

number of triangles generated is of the same order as the

number of lines used in the other two methods; the number

of resulting triangles is 29212, but a much larger error is still

produced than the quasi-Monte Carlo method does with

10,000 lines.

Since the marching cube method is not very efficient for

surface tessellation, a more efficient surface tessellation

method based on recursive subdivision implemented in

svLis was compared with the method proposed in this paper.

svLis is a geometric modeler authored by Adrian Bowyer at

the University of Bath. svLis uses recursive spatial division

combined with faceting to compute areas. A CSG geometric

Fig. 13. Comparison with surface tessellation.

Fig. 14. Errors for the cube, with the chord model.

Fig. 15. Errors for the sphere, with the chord model.

Table 1

Timing comparison with the marching cube method

Method Timing (s) No. of elements Relative error

Random 1.439 10,000 lines 0.016615

Niederreiter 1.450 10,000 lines 0.007674

Marching cube 98.21 29,212 triangles 0.025766
Fig. 16. Errors for the cylinder, with the chord model.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782 779

model consisting of unions, intersections, and complements

of primitives represented by implicit functions of the three

space variables is initially surrounded by an axis-aligned

box large enough to contain the whole object being defined.

This box is recursively divided into a binary tree of smaller

boxes by further axis-aligned planes. As each new smaller

child box is generated the set-theoretic expression defining

the contents of its larger parent box is pruned to the child

box, that is, it is simplified using the normal rules of logic

such as the Absorption Law and De Morgan’s Law, together

with information about which parent primitives lie wholly

outside or wholly within the child box. This information is

obtained by treating the boxes as three affine intervals in the

three space variables, and substituting these intervals into

the implicit functions defining the primitives. For more

details of this process, see Ref. [21] or the svLis website

(http://www.bath.ac.uk/~ensab/G_mod/Svlis/).

The terminating conditions for the recursive box

division are twofold: recursion stops when there are three

or fewer primitives in a box or when each of those

primitives has a range of grad vectors in the box smaller

than a predetermined level. The first condition divides down

to surfaces, edges and corners, and the second divides

curved surfaces until reasonably locally flat parts of them

are found. This second division criterion is also used to

decide which of the three possible division directions to use

at each stage—the direction is chosen that splits the surfaces

to give the best distribution of grad vectors. Thus cylinders,

for example, get divided into long strips parallel to their

axes (though there is an aspect ratio constraint on this to stop

the division boxes getting too long and thin).

Once the model has been divided, svLis facets it by

decomposing each leaf box in the tree that contains model

surface into a pattern of packed tetrahedra. The points where

the primitives cut the edges of these tetrahedra are found by

Table 2

Timings (s) for the recursive subdivision method

Relative error (%) Sphere Box–sphere L ^ cylinder

8 0.0686281 0.0897207 0.0852837

4 0.0985547 0.408693 0.0942379

2 0.517069 0.859189 0.0969864

1 0.539595 1.11492 0.0989368

0.5 1.91135 2.21722 0.099912

0.25 2.05938 3.55824 0.180743

Fig. 17. Errors for the L ^ cylinder in Fig. 12, with the chord model. Fig. 18. Comparison between the chord and tangent model for the

L ^ cylinder in Fig. 12.

Fig. 19. The ‘skeleton’.

Fig. 20. The ‘gate’.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782780

http://www.bath.ac.uk/~ensab/G_mod/Svlis/

binary division, and triangles or quadrilaterals with vertices

at those points are used to approximate the primitives.

The quality of the faceting, and thus the accuracy of the

area calculation, therefore depends on the fineness of the

grad vector criterion, and the effect that this has on whether

a surface is considered flat enough to facet. The experiments

for this paper were done by gradually refining this figure

until two areas for a shape were found, one less accurate

than the required error, and one more. The timing for the

actual error being aimed at was found by linearly

interpolating between the times that gave rise to those two

area values.

Tables 2 and 3 show the comparison between the

recursive subdivision method and the quasi-Monte Carlo

method. Table 2 gives the timings in seconds required by the

recursive subdivision method to achieve various relative

errors for three solid models: a sphere of radius 20, the

‘skeleton’ shown in Fig. 19 and the object L ^ cylinder

shown in Fig. 12. Table 3 gives the respective timing data

for the new method. The true areas for the three objects are

5026.55, 1752.83, and 1557.08, respectively. The data in

Table 2 were generated on a PC with 1.2 GHz Pentium CPU

running Linux RedHat 7.2. The data in Table 3 were

generated on a PC with 1.2 GHz Pentium CPU running MS

Windows 2000.

It is noted that the new method is more efficient than the

recursive subdivision method for the sphere and the

Table 3

Timings (s) for the quasi-Monte Carlo method

Relative error (%) Sphere Box–sphere L ^ cylinder

8 0.010600 0.029900 0.029000

4 0.042400 0.080800 0.094800

2 0.074650 0.130150 0.161900

1 0.106600 0.181550 0.228300

0.5 0.138700 0.234000 0.293900

0.25 0.169700 0.334700 0.359600

Fig. 21. Errors for the ‘skeleton’, with the tangent model. Fig. 22. Errors for the ‘gate’, with the tangent model.

Fig. 24. Errors for the ‘gate’, with the chord model.

Fig. 23. Errors for the ‘skeleton’, with the chord model.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782 781

‘skeleton’ but is slower than the latter for the object

L ^ cylinder. We speculate that the recursive subdivision

method does not need to subdivide the surface of the object

L ^ cylinder to a very fine level in order to obtain a good

approximation of the surface by polygonal facets, since the

major part of the surface of the L ^ cylinder is planar, while

the new method based on line–surface intersection does not

exploit the planarity of the object surface for a possible

speedup; hence, the recursive subdivision method is faster

in this case. This comparison also suggests that the new

method tends to perform better for objects with mainly

curved boundary surfaces.

Note also that Tables 2 and 3 lead us to believe that the

quasi-Monte Carlo method will scale better if even results of

higher accuracy are required.

7. Conclusion

We have presented a quasi-Monte Carlo method for

computing the surface area of a CSG object. This method is

based on a classical result in integral geometry, the

Cauchy–Crofton formula. To devise a practical and

efficient method, we have investigated the problem of

generating a set of evenly distributed lines in 3D space using

Niederreiter’s low discrepancy sequences. Our experiments

show that the quasi-Monte Carlo method delivers, in

general, more accurate results and better timing perform-

ance for geometric models with largely curved boundary

surfaces than the conventional surface tessellation approach

or the standard Monte Carlo method using random lines

with pseudo-random uniform distribution.

Acknowledgments

The authors would like to thank Y.T. Lee for useful

discussions that helped improve an earlier version of this

paper. Thanks also go to the two anonymous referees who

gave valuable comments on this work.

References

[1] Bratley P, Fox BL, Niederreiter H. Algorithm 738: programs to

generate Niederreiter’s low-discrepancy sequences. ACM Trans Math

Software 1994;20(4):494–5.

[2] Beckers ALD, Smeulders AWM. The probability of a random

straight line in two and three dimensions. Pattern Recog Lett 1990;

11:233–40.

[3] Davies TJG, Martin RR, Bowyer A. Computing volume properties

using low-discrepancy sequences. Computing 2001;14(Suppl):

55–72.

[4] Faux ID, Pratt MJ. Computational geometry for design and

manufacture. Chichester, UK: Ellis Horwood; 1985.

[5] Foley J, van Dam A, Feiner SK, Hughes JF. Computer graphics:

principles and practice. Reading, MA: Addison-Wesley; 1990.

[6] Pottmann H, Wallner J. Computational line geometry. Berlin:

Springer; 2001.

[7] Gonzales-Ochoa C, McCamnon S, Peters J. Computing moments of

objects enclosed by piecewise polynomial surfaces. ACM Trans

Graph 1998;17(3):143–57.

[8] Howard CV, Reed MG. Unbiased stereology: three-dimensional

measurement in microscopy. New York: Springer Verlag; 1998.

[9] Lee YT, Requicha AAG. Algorithms for computing the volume and

other integral properties of solids, Part I. Commun ACM 1982;25(9):

635–41.

[10] Lee YT, Requicha AAG. Algorithms for computing the volume and

other integral properties of solids, Part II. Commun ACM 1982;25(9):

642–50.

[11] Lee YT. Personal communication, 2001.

[12] Lorensen W, Cline HE. Marching cubes: a high resolution 3D surface

construction algorithm. Comput Graph 1987;21(4):163–9.

[13] Niederreiter H. Quasi-Monte Carlo methods and pseudo-random

numbers. Bull Am Math Soc 1978;84(6):957–1041.

[14] Prisant MG. Applications of the ray representation to problems of

protein structure and function. Proceedings of CSG 96, Information

Geometers, Winchester, 1996, p. 33–47.

[15] Santaló LA. Introduction to integral geometry. Paris: Hermann;

1953.

[16] Santaló LA. Integral geometry. In: Chern SS, editor. Studies in global

geometry and analysis, Washington, DC: The Press of The

Mathematical Association of America; 1967. p. 147–95.

[17] Sarraga R. Computation of surface areas in GMSolid. IEEE Comput

Graph Appl 1982;2(7):65–70.

[18] Solomon H. Geometric probability. Philadelphia: SIAM; 1978.

[19] Timmer HG, Stern JM. Computation of global properties of solid

objects. Computer-Aided Des 1980;12(6):301–4.

[20] Tobler RF, Galla TM, Purgathofer W. ACSGM—an adaptive CSG

meshing algorithm. Proceedings of CSG 96. Information Geometers,

Winchester, p. 17–31, 1996.

[21] Voiculescu I, Berchtold J, Bowyer A, Martin RR, Zhang Q. Interval

and affine arithmetic for surface location of power- and Bernstein-

form polynomials. In: Cipolla R, Martin R, editors. The mathematics

of surfaces IX, Berlin: Springer; 2000. p. 410–23.

[22] Wilkie A, Tobler RF, Purgathofer W. Photon radiosity lightmaps for

CSG solids. Proceedings of CSG 98. Information Geometers,

Winchester, p. 155–67, 1998.

X. Li et al. / Computer-Aided Design 35 (2003) 771–782782

	Using low-discrepancy sequences and the Crofton formula to compute surface areas of geometric models
	Introduction
	Formula for surface area computation
	Generating uniformly distributed lines
	The chord model
	The tangent model

	Low discrepancy sequences
	Intersecting a line with a CSG solid
	Implementation and experiments
	Conclusion
	Acknowledgments
	References

